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Available Data Analysis Methods
for Nonstationary (but Linear) time series

• Various probability distributions
• Spectral analysis and Spectrogram
• Wavelet Analysis
• Wigner-Ville Distributions
• Empirical Orthogonal Functions aka Singular 

Spectral Analysis
• Moving means
• Successive differentiations



Available Data Analysis Methods for Nonlinear 
(but Stationary and Deterministic) time series

• Phase space method
• Delay reconstruction and embedding
• Poincaré surface of section
• Self-similarity, attractor geometry & fractals

• Nonlinear Prediction
• Lyapunov Exponents for stability



The Empirical Mode Decomposition:

To generate the adaptive basis, the Intrinsic Mode 

Functions (IMF), from the data

The Hilbert Spectral Analysis:

To generate a time-frequency-energy 
representation of the data Based on the IMFs

HHT, for Nonstationary, Nonlinear and Stochastic 
data, consists of the following components:



The Empirical Mode 
Decomposition Method 

Sifting



Empirical Mode Decomposition: 
Methodology : Test Data



Empirical Mode Decomposition: 
Methodology : data and m1



Empirical Mode Decomposition: 
Methodology : data & h1



Empirical Mode Decomposition: 
Methodology : h1 & m2



Empirical Mode Decomposition: 
Methodology : h4 & m5



Empirical Mode Decomposition
Sifting : to get one IMF component
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Two Stoppage Criteria : S and SD

A. The S number :  S is defined as the  
consecutive number of siftings, in which the 
numbers of zero-crossing and  extrema are the 
same for these S siftings.

B.   SD is small than a pre-set value, where
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Empirical Mode Decomposition: 
Methodology : IMF c1



Empirical Mode Decomposition
Sifting : to get all the IMF components
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Empirical Mode Decomposition: 
Methodology : data & r1
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Hilbert Transform : Definition



Comparison between FFT and HHT
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Comparisons: Fourier, Hilbert & Wavelet



An Example of Sifting



Length Of Day Data



LOD :  IMF



LOD : Data & c12



LOD : Data & Sum c11-12



LOD : Data & sum c10-12



LOD : Data & c9 - 12



LOD : Data & c8 - 12



LOD : Detailed Data and Sum c8-c12



LOD : Data & c7 - 12



LOD : Detail Data and Sum IMF c7-c12



LOD : Difference Data – sum all IMFs



Traditional View
a la Hahn  (1995) : Hilbert



LOD : Mean envelop from 11 different siftings



Mean Envelopes for Annual Cycle IMFs



Comparisons
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Characteristics of Data from 
Nonlinear Processes
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Duffing Pendulum



Hilbert’s View on Nonlinear 
Data



Duffing Type Wave

Data: x = cos(wt+0.3 sin2wt)



Duffing Type Wave
Perturbation Expansion
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Duffing Type Wave
Wavelet Spectrum



Duffing Type Wave
Hilbert Spectrum



Duffing Type Wave
Marginal Spectra



Technology Description

Results:
• An adaptive basis to filter signal
• Frequency defined as a function of time by 

differentiation rather than convolution 
analysis

• Sharp identification of embedded 
structures

• A more simple and revealing 
interpretation than prior methods



• Conceptually simple and direct
• An efficient, adaptive, user-friendly set of algorithms
• Capable of analyzing nonlinear and nonstationary signals 
• Improves accuracy by using an adaptive basis to preserve 

intrinsic properties of data
• Yields results with more physical meaning and a different 

perspective than existing tools
• Useful in analyzing a variety of from nonlinear and 

nonstationary processes

Market Potential

Key Considerations



Possible Applications

• Vibration, speech and acoustic signal  analyses : this also 
applies to machine health monitoring.

• Non-destructive test and structural Health monitoring

• Earthquake Engineering

• As a nonlinear Filter

• Bio-medical applications

• Time-Frequency-Energy distribution for general nonlinear and 
nonstationary data analysis, for example, turbulence



Sound Enhancement : 

• Fourier filter is linear and stationary; it works in 
Frequency domain

• Fourier filter will take away harmonics and dull 
the sharp corners of all the fundamentals

• EMD filter is nonlinear and intermittent; it works 
in Time domain

• EMD filter will take the unwanted noise of short 
periods and leaves the fundamentals unchanged



EMD as Filter
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An Example : 
Removal of Unwanted Sound

HHT Filtering to Separate

Ding from Hello



Data : Hallo + Ding



IMF : Hallo + Ding



Filter for Hallo + Ding is defined as

• c1(15200:30000) = 0;

• c2(15200:30000) = 0;

• c3(15200:21400) = 0;

• For c4 to c9 : q=[cos(2ð t/1200) +1]/2 ; 

for t=0:1200, centered at 15200.



IMF Filtered : Hallo



Data and Filtered Components



Hilbert Spectrum : Hallo + Ding



Hilbert Spectrum Filtered : Hallo



Sound Effects : Data

Raw data : Hallo + Ding



Sound Effects : Fourier Filtered

Fourier 3K

Fourier 2K

Fourier 1KOriginal



Sound Effects : EMD Filtered

EMD Filtered Hello

Original Sound
EMD Filtered Ding



Hilbert Spectra for Different 
Speakers

Potential Application for Speaker 
Identification



Difference between Speakers



IMF : Hello N



IMF : Hello J



Hilbert Spectrum : Hello N



Hilbert Spectrum : Hello J





Detailed Hilbert Spectrum : Hello N



Detailed Hilbert Spectrum : Hello J



Detailed Wavelet Spectrum : Hello N



Detailed Wavelet Spectrum : Hello J



100 Smoothed H Spectrum : Hello N



200 Smoothed H Spectrum : Hello N



EMD as Filters :
The Effects of Harmonics



Speech Analysis : 
Hello : The Effects of Harmonics and EMD filtering



Speech Analysis : 
Hello : Details of the Difference Data



Speech Analysis : 
Hello : The Hilbert Transform of the Difference Data



Speech Analysis : 
Hello : The Effects of Harmonics and EMD filtering



Summary

• Numerous application possibilities
• Intellectual property protected
• Concepts demonstrated in many applications
• Licensing and partnering opportunity
• Enabling technology with significant 

commercial potential
• Significant benefits

• Precision, flexibility, accuracy, easy implementation, 



Contact Info
For more information, please contact:

Evette Brown-Conwell
• Phone: (301) 286-0561
• E-mail: 

evette.r.conwell@nasa.gov


